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Abstract
Let £ ={l1,l2,...,ls} be a set of s nonnegative integers and K = {ky, ko, ..., k. } be a set of
integers satisfying max!; < mink;. Let F be an L-intersecting family of subsets of {1,2,...,n}

such that |F| € K for every F € F. Let {0,1,...,s —r—1} C £ with 1 <7 < s and K be any
set of integers with mink; > s —r and KN L = 0. Then |F| < ("]") + (*2) + -+ (2)).
These results confirm Snevily’s conjecture on set systems partially.
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1 Introduction

Throughout this paper X will denote the set [n] = {1,2,...,n}, K = {ki,ko,...,kr} and £ =
{li,12,...,ls} will be two sets of nonnegative integers with max!; < mink;, and F will denote a
family of subsets of X such that [ENF| € L for every pair of distinct subsets E, F' € F and |F| € K
for every F' € F. In this paper, we are interested in the following conjectures of Snevily, which give

some upper bounds on the size of F.
Conjecture 1.1 (Snevily [6]) For any K and £ with maxl; < mink;, |F| < (7).

Conjecture 1.2 (Snevily [6]) For any K and £ with maxl; < mink;, |F| < (n_l) + (n_l) +

s s—1
ot (n—l).

S—T
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Note that Conjecture 1.2 is weaker than Conjecture 1.1. We will first present some results

related to this problem that have been obtained by others.

Theorem 1.3 (Ray-Chaudhuri and Wilson [2]) If K = {k} and L is any set of nonnegative

integers with max l; < k, then |F| < (7).

Theorem 1.4 (Snevily [5]) If K and L are any sets such that maxl; < mink;, then |F| <
(") + C2) e ()

Theorem 1.5 (Snevily [6]) Let K and L be sets of nonnegative integers such that max l; < min k;.
Then |F| < ("71) + (20 + -+ (o)

Theorem 1.6 (Snevily [6]) Conjecture 1.1 holds for £L=1{0,1,...,s —1}.

Theorem 1.7 (Hwang and Sheikh [4]) Conjecture 1.2 holds when K is a consecutive set.

Theorem 1.8 (Chen and Liu [3]) Conjecture 1.2 holds for L ={1,2,...,s}.

Clearly, Ray-Chaudhuri-Wilson Theorem (Theorem 1.3) implies that Conjecture 1.1 holds for
r =1 and Theorem 1.4 implies that Conjecture 1.2 holds for r > s. Here, we will prove Conjecture

1.2 holds for {0,1,...,s —r—1} C Lwithl <r<s.

Theorem 1.9 Let {0,1,...,s —r — 1} C L with 1 < r < s and K be any set of integers with
mink; > s —r and KN L =0. Then |F| < (";") + (") +---+ ("2)).

s—1 s—r
2 Proof of Theorem 1.9

In this section, we give a proof for Theorem 1.9 using the techniques in [1, 3, 4, 5, 6].
Proof of Theorem 1.9 Let {0,1,...,s—r—1} C L with 1 <r < s and K be any set of integers
with mink; > s —r and KNL = 0. Let F = {F1, F,..., F,}. With each set F; € F, we associate

its characteristic vector v; = (vj,,...,v;,) € R™, where vi; =1 if j € F; and v;; = 0 otherwise.
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Recall that a polynomial in n variables is multilinear if its degree in each variable is at most 1.
Let us restrict the domain of the polynomials we will work with to the n-cube @ = {0,1}" C R™.
Since in this domain ;2 = z; for each variable, every polynomial in our proof is multilinear.

For each F; € F, define

S

fitr) =[] wi 2= 1).

j=1
Then f;(v;) # 0 for every 1 <4 <m and f;(v;) =0 for i # j.

Let G = {G1,...,G,} be the family of subsets of X = [n]\ {n} with size at most s — 1, which is
ordered by size, that is, |G;| < |G| if i < j, where p = Z:;& (";1) Let u; denote the characteristic
vector of G;. For i =1,...,p, we define

gi(x) = (1 — ) [] =

JEG:
Since g;(u;) # 0 for every 1 <4 < p and g;(u;) = 0 for any j < ¢, {g;(z)|1 < i < p} is a linearly
independent family.
Let H = {Hi,...,Hy} be the family of subsets of [n] with size at most s — r which contain n,

where ¢ = 5707 ("), We order the members of H such that |H;| < |Hj| if i < j. Let w; be the

characteristic vector of H;. For i =1,...,q, define
T n
hi(z) = { [T Q2 — k) | (I] 25)
=1 j=1 JEH;

Note that h;(w;) = 0 for any j < ¢ and h;(w;) # 0 for every 1 < i < ¢ since mink; > s — r, and
thus {h;(z)|1 <14 < ¢} is a linearly independent family.
We will show that the polynomials in

{filz)1 <i<m}U{gi(x)]1 <i < p}U{hi(z)|]l <i<q}

are linearly independent. Suppose that we have a linear combination of these polynomials that

equals zero:

m P a
D aifi(x) + Y Bigi(x) + Y yihi(x) = 0. (2.1)
i=1 i=1 i=1
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We will prove that the coefficients must be zero. First by substituting the characteristic vector v;
of F; with n € F; into equation (2.1), we get «;f;(v;) = 0. Since f;(v;) # 0, we have o; = 0 if
n € F;. It follows that

> aifi(@)+ > Bigilx) + Z”ﬁhi(%) =0. (2.2)

ng¢F; i=1
Then we substitute the characteristic vector w; of H; into the equation (2.2) in order of non-
decreasing size of H; with 1 < i < ¢. Since n € H;, gj(w;) = 0 for every 1 < j < p. For each
F; with n ¢ Fj, we have H; ¢ F;. Since |H;| < s —r and {0,1,...,s —r — 1} C L, we have
|F;j N H;| <s—r—1andso |F;NH;| € L. Thus, fj(w;) =0 for each F; with n ¢ F;. Note that
hj(w;) =0 for any i < j and h;(w;) # 0 for every 1 < ¢ < ¢ since mink; > s —r, it is easy to obtain
that y;h;(w;) = 0 when evaluating equation (2.2) with = w;. We get ; = 0 for 1 <4 < ¢. Thus

equation (2.2) reduces to

P
> aifix) + ) Bigi(x) = 0. (2.3)
i=1

ngF;
Let F = F; U {n} if n ¢ F;. We substitute the characteristic vector v} of F;* into the equation
(2.3). Note that f;(vy) = fj(v;) for each j with n ¢ F; and g;(v]) = 0 for 1 < j < p. We get
;i fi(v}) = ;i fi(vi) = 0 which implies o; = 0 if n ¢ Fj. It is left to show that o; = 0 for 1 <14 <g.
Since the family {g;(z)|1 < i < p} is linearly independent, we are done.
To complete the proof, simply note that each polynomial in {f;(z)|1 <7 <m}U{g(z)]l1 <i<
p} U{hi(z)|]1 < i < ¢} can be written as a linear combination of the multilinear polynomials of

degree at most s. The space of such multilinear polynomials has dimension Zf:o (?) It follows

e S () <5 ()

i=0 i=0 i=0

() () e ()

This completes the proof of the theorem. O

that

which implies
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